CUAB: Supervised Learning of Disorders and their Attributes using Relations

نویسندگان

  • James Gung
  • John Osborne
  • Steven Bethard
چکیده

We implemented an end-to-end system for disorder identification and slot filling. For identifying spans for both disorders and their attributes, we used a linear chain conditional random field (CRF) approach coupled with cTAKES for pre-processing. For combining disjoint disorder spans, finding relations between attributes and disorders, and attribute normalization, we used l2-regularized l2-loss linear support vector machine (SVM) classification. Disorder CUIs were identified using a back-off approach to YTEX lookup (CUAB1) or NLM UTS API (CUAB2) if the target text was not found in the training data. Our best system utilized UMLS semantic type features for disorder/attribute span identification and the NLM UTS API for normalization. It was ranked 12th in Task 1 (disorder identification) and 6th in Task 2b (disorder identification and slot filling) with a weighted F Measure of 0.711.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Using Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council

Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...

متن کامل

Using Supervised Clustering Technique to Classify Received Messages in 137 Call Center of Tehran City Council

Supervised clustering is a data mining technique that assigns a set of data to predefined classes by analyzing dataset attributes. It is considered as an important technique for information retrieval, management, and mining in information systems. Since customer satisfaction is the main goal of organizations in modern society, to meet the requirements, 137 call center of Tehran city council is ...

متن کامل

Supervised relation extraction for ontology learning from text based on a cognitively plausible model of relations

Most work on ontology learning from text relies on unsupervised methods for relation extraction inspired by Hearst’s work, and attempts to extract relations identified in work in formal linguistics and ontology. In this paper we present work aiming at extracting from text the set of concept attributes actually associated to concepts according to psychological research, and using state-of-the ar...

متن کامل

Extracting concept descriptions from the Web: the importance of attributes and values

When extracting information about concepts from the Web, the problem is not recall, but precision: trying to identify which properties of a concept are genuinely distinctive. We discuss a series of experiments in empirical ontology using both unsupervised and supervised methods, showing that not all semantic relations we can extract from text are equally useful, and suggesting that attempting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015